In microwave communications—as in all electronic communications mediums—operators trend toward the latest technologies (e.g., IP/MPLS). They all have conditioning to think that newer is better. And by and large that’s right.
However, when it comes to IP/MPLS—one of the most advanced packet technologies—you need to handle this concept with care. Especially in a mixed infrastructure that includes microwave, fiber and other potential backhaul transport.
Because of need for higher capacities, the trend toward shorter link distances for mobile backhaul and declining product costs, 70/80GHz (i.e., E-band) solutions are gathering significant interest for mobile backhaul and enterprise access applications. However, because these frequencies are new to most people, there is little understanding of costs and other issues related to licensing the 70-80GHz spectrum.
As symbolized at the recent EANTC interoperability testing event, Aviat microwave radios can help solve the complexity and scalability problems of Carrier Ethernet technology.
Carrier Ethernet (CE) transport networks are growing in both scale and complexity, requiring both vendors and operators to deliver solutions to sustain their growth. To help address this, Aviat Networks recently participated in the European Advanced Networking Testing Center’s (EANTC) annual multi-vendor interoperability testing event to validate several aspects of scaling CE networks, among other things.
Increasing CE network sizes increase the complexity of management—especially from a services perspective—when CE services span multiple network domains. The ability to partition management domains and effectively manage alarms that accurately identify and propagate notification of network faults, dramatically speeds up the fault isolation and resolution process across large networks. Utilizing and effectively implementing “Hierarchical Service OAM” in growing CE networks is valuable to overcoming this challenge and was a key area of the recent interoperability testing.
Another critical aspect of growth is dealing with multi-technology—not just multi-vendor—interoperability. As CE networks scale, there is an increasing mix of Ethernet switching, MPLS and, most recently, MPLS-TP internetworking emerging. One potentially complex area that was also tested was validating the operation and survivability of intersecting Ethernet and MPLS-TP rings in a multi-homed topology. The “ERPSv2 and VPLS Interworking” test validated that standards-based G.8032 Ethernet protected rings and MPLS-TP VPLS rings can interoperate, or more significantly “co-operate,” to allow complex multi-technology networks to deliver reliable end-to-end services.
To learn about these aspects of scaling and dealing with complex CE networks check out the EANTC white paper for more details.
Errol Binda
Sr. Product and Solutions Marketing Manager
Aviat Networks
The Microwave Networking seminar hosted by Aviat Networks in Washington D.C. in Sept 2012 had a large turnout of attendees who listened to speakers present on wireless security, MPLS, Carrier Ethernet and other topics of interest to the backhaul community.
Aviat Networks recently completed the latest in its Technology Seminar series on microwave networking with a two-day event in the Crystal City area of Washington D.C. One observer noted attendees were particularly interested in hearing more about security of wireless backhaul systems and how to make a choice between using IP/MPLS or Carrier Ethernet.
The seminar was packed to capacity with more than 100 attendees from organizations that included various federal government agencies, utility companies, public safety organizations and mobile operators. These seminars focus solely on issues relevant to microwave deployments, related technology, regulatory issues, and deployment considerations—with no product pitches.
Attendees took advantage of an agenda that covered a wide variety of technology topics, including microwave-focused sessions on capacity, Ethernet QoS and OAM, IP/MPLS, security and strategies for lowering the total cost ownership of microwave networking. The highlight of the seminar was again Dick Laine, longtime Aviat Networks principal engineer, who spoke at length about Microwave Path Engineering and designing links using Adaptive Modulation. Dick is one of the foremost authorities in the U.S. on microwave planning and path design, and some attendees travel long distances just to hear him speak and share his experiences of more than 50 years in the microwave networking business. (If you’ve never heard/seen Dick present, register for his free Radio Head Technology Series).
Aviat Networks also welcomed special guest speakers from the NTIA, Comsearch, CommScope, Tellabs and LTI DataComm who graciously contributed their time and effort to provide a deeper understanding for attendees on their topics of expertise.
Keep a lookout for details of the next Technology Seminar that may be coming to a city near you! Or if you would like to be notified directly when our next microwave networking seminar is scheduled, please complete this form.
Stuart D. Little
Director, Product Marketing
Aviat Networks
Aviat Networks has been deploying LTE networks for well over a year now to operators globally, including the largest live commercial LTE network in operation today. So, it’s probably a good time to reflect on some key observations and lessons learned to date. Here are the top 3 things we’ve learned from our LTE microwave backhaul deployments that are most notable:
1. LTE backhaul capacity needs are being easily addressed by packet microwave:
– When it comes to capacity there is a perception that fiber is the only answer. The reality is that based on current LTE deployments, 50Mbps is more than adequate for most LTE cell sites today. Yet, for comfort and long term growth most of our customers are licensing and deploying 100-200Mbps of microwave capacity to their LTE equipped cell sites. For intermediary sites that aggregate traffic, link aggregation techniques are being utilized to effectively bond multiple channels for higher capacities, all well within the multi Gbps reach of advanced microwave systems, such as ours.
2. Ease of deployment and fast time to market (TTM) are critical for success:
– This LTE operator quote speaks volumes regarding the real challenge he faces: “Whoever can deliver the quickest with the least amount of pain will win most of the business”. TTM is most crucial for operators trying to stay one step ahead of their competition… more markets served, better coverage etc. To address this, we have seen a growth in our customers seeking a one stop shop approach for LTE microwave backhaul deployment where we engineer, configure, test, and deploy the full end–to-end system, providing overall project management, frequency coordination, installation and a host of other services. The fact that most microwave systems can be installed in a few weeks as opposed to months for fiber, is also playing a key role in microwave growth in areas like North America where microwave penetration is low, but growing as a result of LTE rollout.
3. Backwards compatibility with multivendor interoperability is key:
– It’s all about LTE, right? Well, yes and no. LTE is driving the new investment and deployments, but the reality is that 2/3G will be around for a long time. So, while the new deployments are driven by all-IP LTE, there are still ‘legacy’ T1/E1s still hanging around that also need to be backhauled. This has been a perfect fit for Aviat’s all-in-one Hybrid (TDM+IP) and All-IP microwave systems, which allow our customers to easily software configure their mix of traffic. So, while the bulk of the transport bandwidth is provisioned for IP to support LTE, some is still reserved for good ‘ole TDM.
– Another related aspect is multivendor interoperability across a variety of product types. The backhaul market has flourished in the last few years as we know, and so has the variety of cell site switches, routers, packet optical devices etc. that our microwave systems interoperate with to fulfill our customers ‘end-to-end’ LTE backhaul solution. Consistent Carrier Ethernet standards applied across both the microwave and fiber core makes this very straightforward when it comes to provisioning Ethernet backhaul services, supporting packet network synchronization, and managing these services.
So, in summary, I would say we’ve learned that packet microwave is well suited for LTE capacity needs; it can be rapidly and easily deployed; and provides great flexibility for legacy services and multi-vendor interoperability. But the best proof of all this is in our customers’ live networks.
Errol Binda
Solutions Marketing
Aviat Networks
Fore more information on LTE microwave backhaul and a customer case study click here.
This year Carrier Ethernet World (CEW) Asia Pacific (APAC) took place from Nov. 30 – Dec. 2 at the Resorts World Convention Centre in Singapore. Around 320 delegates attended; most were local operators. However, there was representation from other APAC countries, in particular Malaysia and Indonesia.
Aviat Networks was the sole microwave radio solutions provider at the event and Steve Loebrich, Director Product & Solutions Marketing, spoke on the subject of “simplifying the network to enable high capacity services”. It was interesting that the Chinese vendors did not attend.
The main theme of the event was cloud computing and how can it generate additional revenue for operators. Another hot discussion topic was synchronization and its challenges. Most operators in Asia prefer 1588v2 due to its simplicity in implementation; however some operators have chosen to implement both 1588v2 and sync Ethernet in their network.
Unlike previous years there were no debates on MPLS traffic engineering technology to adopt VPLS, T-MPLS or MPLS-TP etc. This year, the major operators were advocating not to build overly complex networks offering next generation services. As an example, one major operator has chosen to adopt PBB in its access layer for corporate services.
Yeu Ping Lee
Product Marketing
Aviat Networks